Politechnika Warszawska

Code of the	4606-VP-ES-0000)8	Name c	of the course				Inteligentna sieć elektroenergetyczna		
course		- 1						Smart grid		
Type of the course	Specialty subject									
Course coordinator	Professor Haitha	Professor Haitham Abu-Rub			rse teacher Professor Haitham Abu-Rub					
Implementing unit	Fakulty of elektrical engineering			c discipline / ciplines*	- automation, electron technologies		-	ics, electrical engineering and space		
Level of education	Doctoral st	Doctoral studies Semester Summer, , Mar		arch 15, 2025 to June 15, 2025						
Language of the course	English									
Type of assessment	pass	pass		Number of hours in a semester		30		ECTS credits		3
Minimum number of participants	10		Maximum number of participants					Available for students (BSc, MSc)		Yes/No
Type of classes		Lectu	ure Auditory cla		ses	Ses Project classes		Laboratory		Seminar
Number of hours	in a week									
	in a semester	20					10			

* does not apply to the Researcher's Workshop

1. Prerequisites

no prerequisites

2. Course objectives

This course will present smart grid elements, its enabling technologies, current state and the future perspectives. The taught material contains an overview of the smart grid architectural, renewable energy integration opportunities and challenges, power electronics as enabling technology of the smart grid, microgrids structure and control, energy storage, and demand response.

The smart grid encompasses a wide array of technology that has the potential to dramatically improve the reliability, security, and efficiency of the electric grid, offering economic and environmental benefits. The smart grid has been described as the convergence of electric system and information technologies to provide utility customers the enhanced information, services and reliability that are so critical for the coming future.

The objective of this course is to equip the students with an overview of smart grid elements and fundamentals.

3. Course content (separate for each type of classes)

Lecture

- 1. Smart grid architectural overview.
- 2. Renewable energy integration: opportunities and challenges.
- 3. Power electronics as enabling technology of the smart grid.
- 4. Micro grids: structure and control.
- 5. Energy storage for smart grid balancing.
- 6. Smart transportations.
- 7. Net zero energy building, demand response and demand side management.

- 8. Advanced metering infrastructure and communication.
- 9. Information security standards in smart grids.
- 10. Exams and Review.

Class projects

- 1. Demand management (demand response and demand side management).
- 2. Grid connected and islanded AC Microgrid (structure and control).
- 3. Smart meters and advanced metering infrastructure.
- 4. Islanding detection techniques.
- 5. Big data challenges and opportunities for smart grid.
- 6. SCADA system in smart power grid.
- 7. EV charging technologies.
- 8. Current status and future perspectives of energy storage.
- 9. Virtual utilities in smart grid.
- 10. Impact of EV integration on power system.
- 11. Power Quality issues in power electronics dominated grid.
- 12. Renewable energy dominated grid.

4. Learning outcomes						
Type of		Reference to the	Learning outcomes			
learning	Learning outcomes description	learning outcomes of	verification			
outcomes		the WUT DS	methods*			
Knowledge						
K01	Understand the smart grid concepts and terminology.	SD_W1	Exams			
K02	Know the renewable energy integration and micro grid technology.	SD_W2	Exams			
К03	Know about energy storage issues in smart grid.	SD_W3	Exams			
Skills						
	Know the communication technologies,					
S01	advanced metering infrastructure, and	SD_U1, SD_U2, SD_U3	Exams			
	information security standards in smart grids.					
S02						
Social competences						
	Investigate the demand response, demand side		Social			
	management and economy of the smart grids.		competencies are			
SC01			assessed based on			
		SD_K5, SD_K4	observation of			
			behaviours and			
			attitudes during the			
			conducted classes			

*Allowed learning outcomes verification methods: exam; oral exam; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5.	Assessment criteria		
The scores for the class attendance, research assignment, and final examination.			

6. Literature

Primary references:

[1] Smart Grid and Enabling Technologies, <u>Shady S. Refaat</u>, <u>Omar Ellabban</u>, <u>Sertac Bayhan</u>, <u>Haitham</u> <u>Abu-Rub</u>, <u>Frede Blaabjerg</u>, <u>Miroslav M. Begovic</u>, Wiley, 2021. (Primary textbook).

[2] Class Material.

No.	Description	Number of hours
1	Hours of scheduled instruction given by the academic teacher in the classroom	20
2	Students projects and presentations	10
2	Hours of consultations with the academic teacher, exams, tests, etc.	15
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	20
4	Amount of time devoted to the preparation for exams, test, assessments	15
	Total number of hours	80
	ECTS credits	3

8. Additional information				
Number of ECTS credits for classes requiring direct participation of academic teachers	2			
Number of ECTS credits earned by a student in a practical course	1			